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Abstract
The density of states for a chaotic billiard with randomly distributed point-like
scatterers is calculated, doubly averaged over the positions of the impurities and
shape of the billiard. Truncating the billiard Hamiltonian to an N ×N matrix,
an explicit analytic expression is obtained for the case of broken time-reversal
symmetry, depending on the rank N of the matrix, number L of scatterers and
strength of the scattering potential. In the strong coupling limit a discontinuous
change is observed in the density of states as soon as L exceeds N.

PACS numbers: 05.45.Mt, 03.65.Nk, 05.30.−d

1. Motivation

Experiments with classical waves have become a very versatile tool to study localization
due to disorder. In particular, the experiments by Lagendijk and co-workers (Wiersma et al
1997) on the localization of light in powders, and by the Genack group on the localization of
microwaves in disordered metallic spheres (Chabanov and Genack 2001) have to be mentioned
(for a review of these types of experiments see Soukoulis (1996)). Moreover, microwave
techniques are able to study spatially resolved field distributions in the disordered systems of
linear dimensions in the order of some 10 cm (Kudrolli et al 1995, Stöckmann et al 2001).
Such quantities are inaccessible in electronic quantum dot systems of submicron size (except
for the recent experiments by Topinka et al (2001)). With increasing frequency, one typically
observes a transition from localized to delocalized wavefunctions, depending on the number
of scatterers and strength of the scattering potential. Pulse propagation can also be studied
by microwave techniques as shown by Stein et al (1995). All quantities of interest are
thus experimentally accessible in disordered systems, including conductivity, localization–
delocalization transitions, pulse propagation, transition from the ballistic to the diffusive
regime and so on.

On the theoretical side the situation is less favourable. Though there is a vast amount of
literature on disordered systems already from the seventies and the eighties of the last century
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(see, e.g., Anderson (1978), Lee and Ramakrishnan (1985) for reviews), there is as yet no
theory available covering the complete range from the localized to the delocalized regime.
Today the standard approach to study disordered systems uses supersymmetry techniques
to arrive at Efetov’s nonlinear σ model (Efetov 1983). It has the serious drawback that the
occurring supersymmetric variables are field variables depending on position. Only in the zero
mode approximation, where the position dependences are neglected, can the model be solved
exactly and reproduce the random matrix theory. This is why localization–delocalization
transitions cannot be obtained in this way. Only perturbational corrections are possible, with
the consequence e.g. that the distribution of wavefunction intensities deviates slightly from
the Porter–Thomas behaviour found in the delocalized regime (see Guhr et al (1998), Mirlin
(2000) for reviews).

In this paper an alternative approach is proposed which avoids the complication of
position-dependent supersymmetry fields. Moreover, it is even closer to the situation met
in experiments, as Efetov’s ansatz.

2. The model

Let us consider a billiard system with hard walls and statistically distributed scatterers described
by the Hamiltonian

H = H0 + V (2.1)

whereH0 is the operator of kinetic energy with matrix elements

(H0)nm = E0
nδnm (2.2)

and V is the potential energy of the scatterers. In Efetov’s approach the potential is assumed
to be delta correlated,

〈V (r)V (r ′)〉 ∼ δ(r − r ′) (2.3)

which gives rise to the above-mentioned problems with position-dependent supersymmetry
fields. In this paper the more explicit ansatz

V (r) = 4πλ
L∑
l=0

δ(r − rl) (2.4)

is used instead, where rl are the positions of the scatterers and L is its number. The factor 4π
has been introduced for later convenience. This ansatz dates back to Lifshitz (1964) and has
been applied since then by various authors, among others Luttinger et al (1983, 1987).

On the basis of eigenfunctionsψn(r) of the billiard without scatterers the matrix elements
of V (r) read

Vnm = 4πλ
L∑
l=0

ψ∗
n (rl)ψm(rl). (2.5)

To simplify the calculations we assume that time-reversal symmetry is broken, e.g., due
to the presence of an applied magnetic field.

We now calculate the density of states, averaged over the positions of the impurities,

〈ρ(E)〉 = − 1

π
Im

〈
Tr

(
1

E+ −H

)〉
(2.6)

where E+ = E + iε. Using standard transformations, equation (2.6) can be written as

ρ(E) = − 1

π

d

dE′ Im[Z(E,E′)]
∣∣∣∣
E′=E

(2.7)
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where

Z(E,E′) =
〈 |E′

+ −H |
|E+ −H |

〉
. (2.8)

Z may be written in terms of an integral over commuting and anti-commuting variables as
(Verbaarschot et al 1985)

Z =
〈 ∫

d[x] exp

(
i
∑
αβ

[(E+δαβ −Hαβ)x
∗
αxβ + (E′

+δαβ −Hαβ)ξ
∗
α ξβ]

)〉
(2.9)

where

d[x] =
N∏
α=1

dx∗
α dxα dξ∗

α dξα. (2.10)

We adopt the usual convention and use Latin letters for commutating and Greek letters
for anti-commutating variables. In short-hand matrix notation, equation (2.9) may be written
as

Z =
〈∫

d[x] eix†(E−H)x
〉

(2.11)

where

x = (x1, ξ1, . . . , xN, ξN )
T (2.12)

E = E ⊗ 1N =



E · · · 0
...

. . .
...

0 · · · E


 E =

(
E+ ·
· E′

+

)
(2.13)

and

H = 1 ⊗H =



H111 · · · H1N1
...

. . .
...

HN11 · · · HNN1


 . (2.14)

In equations (2.13) and (2.14) 1N and 1 denote the N- and two-dimensional unit matrices,
respectively. Inserting expression (2.1) for H, equation (2.11) reads

Z =
∫

d[x] eix†(E−H0)x
〈
e−4π iλ

∑
lαβ ψ

∗
α (rl)ψβ(rl)(x

∗
αxβ+ξ∗

α ξβ)
〉

=
∫

d[x] eix†(E−H0)xML

(2.15)

where

M = 〈e−4π iλ
∑

αβ ψ
∗
α (r)ψβ(r)(x

∗
αxβ+ξ∗

α ξβ)
〉
. (2.16)

The average in equation (2.16) has to be taken over the positions of the impurities. But,
and this is the central idea of this paper, instead of varying over the positions, we may equally
well calculate this average by weighting the expression on the right-hand side of the equation
with the joint probability density p(ψ1R,ψ1I , . . .) to find at any point in the billiard the values
ψ1R , ψ1I , . . . for the wavefunction amplitudes. If the billiard without scatterers is chaotic,
the probability density factorizes, p(ψ1R,ψ1I , . . .) = ∏

α p(ψαR)p(ψαI ), and the real and
imaginary parts of the wavefunctions are Gaussian distributed,

p(ψR) =
√
A

π
e−Aψ2

R p(ψI ) =
√
A

π
e−Aψ2

I (2.17)
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where A is the billiard area. The average (2.16) over the impurity positions may hence be
written as

M =
∫ ∏

α

[dψαR dψαI p(ψαR)p(ψαI )] e−4π iλ
∑

αβ ψ
∗
αψβ(x

∗
αxβ+ξ∗

α ξβ). (2.18)

With the weight functions (2.17), integrations are easily performed yielding

M = 1∣∣1N + i 4πλ
A
X
∣∣ (2.19)

where X is the N × N matrix with the elements

Xαβ = x∗
αxβ + ξ∗

α ξβ . (2.20)

According to the Weyl formula the mean density of states in two-dimensional billiards is
given by 〈ρ〉 = A/4π . Following the usual practice we normalize this quantity to 1, and omit
the factor 4π/A in the following. The determinant (2.19) is now transformed by means of the
relation

|1N +AB| = |1M + BA| (2.21)

holding for arbitrary N × M matrices A, and M × N matrices B. This follows in a
straightforward manner from the relation |M| = exp[Tr(lnM)]. It is not necessary that the
matrices are quadratic providing us with an efficient tool to reduce the rank of the determinants.
Applied to equation (2.19) relation (2.21) yields

M = 1

|1 + iλX̂| (2.22)

where X̂ is the 2 × 2 supermatrix

X̂ =



∑
α

xαx
∗
α

∑
α

xαξ
∗
α∑

α

ξαx
∗
α

∑
α

ξαξ
∗
α


 . (2.23)

We have thus arrived at the intermediate result

Z =
∫

d[x] eix†(E−H0)x|1 + iλX̂|−L (2.24)

Whenever there are supermatrices involved, determinants and traces have to be interpreted
as super determinants and super traces, respectively, where we shall use the convention of
Verbaarschot et al (1985).

It is instructive to consider the small λ limit of expression (2.24). The determinant may
be expanded as

|1 + iλX̂|−L = exp[−LTr ln(1 + iλX̂)]

= exp

[
−iLλTr X̂ − Lλ2

2
Tr X̂2 + · · ·

]
.

(2.25)

Stopping at the quadratic term, equation (2.24) reads

Z =
∫

d[x]e[ix†(E−H0−Lλ1N)x− Lλ2

2 Tr X̂2] (2.26)

where Tr X̂ = x†x was used. This is exactly the expression obtained for the ensemble average
of the Hamiltonian

H = H0 + Lλ1N +H1 (2.27)

where the matrix elements of H1 are Gaussian random variables with variance
〈
H 2

1

〉 = Lλ2.
We thus can note already at this early stage that in the small λ limit, random matrix results
will be recovered.
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3. The x integrations

The usual approach to performing integrations of type (2.26) is a Hubbard–Stratonovich
transformation to remove the TrX̂2 term in the exponent, depending on the integration variables
in the fourth order. As a result the x integrations reduce to simple Fresnel integrals which are
trivially solved.

For integral (2.24) a Hubbard–Stratonovich transformation is not possible. One way to
proceed further is to write again the determinant in terms of a superintegral,

1

|1 + iλX̂| =
∫

d[y] e−y†(1+iλX̂)y. (3.1)

We need L replicas of this integral since the determinant enters in the Lth power, leading
to the introduction of 4L new integration variables. The x integrations can then be performed
in the usual manner.

To avoid the introduction of such a large number of new integration variables, we apply
another approach. Let us consider the integral

IL(A) =
∫

d[t]|T |L e− Tr(AT ) (3.2)

where

A =
(
a α∗

α ā

)
T =

(
t τ ∗

τ t̄

)
(3.3)

are supermatrices of rank 2.
Because of the basis independence of the trace and determinant it is always possible to

choose the T variables such that A is diagonal, i.e. α = α∗ = 0. Equation (3.2) then reads

IL(A) =
∫

dt dt̄ dτ ∗ dτ

∣∣∣∣ t τ ∗

τ t̄

∣∣∣∣
L

e−(at−āt̄ ). (3.4)

Introducing new integration variables s = at , s̄ = āt̄ , σ ∗ = aτ ∗, σ = āτ we obtain

IL(A) =
∫

ds

|a|
ds̄

|ā| |a|dσ
∗|ā|dσ

∣∣∣∣a−1s a−1σ ∗

ā−1σ ā−1s̄

∣∣∣∣
L

e− Tr(s−s̄)

=
( |ā|

|a|
)L
IL (3.5)

where

IL =
∫

d[t]|T |L e− Tr(T ) (3.6)

or

|A|−L = IL(A)/IL. (3.7)

Because of the basis independence of this expression the latter result holds for arbitrary
supermatricesA, not necessarily diagonal.

This is an alternative to equation (3.1) to express the power of a determinant as a
superintegral, avoiding the need to introduce L replicas. The question arises, how the paths of
integration are to be chosen to make integral (3.2) well defined. From equation (3.3) we have

Tr T = t − t̄ |T | =
(
t − τ ∗τ

t̄

)/
t̄ . (3.8)
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Shifting the variable t by τ ∗τ/t̄ , integral (3.6) reads

IL =
∫

dt dt̄ dτ ∗ dτ

∣∣∣∣ tt̄
∣∣∣∣
L

e−(t+τ ∗τ/t̄−t̄ ). (3.9)

The integration over the antisymmetric variables is straightforward, and we are left with
the t, t̄ integrations,

IL = 1

2π

∫
dt dt̄

tL

t̄L+1
e−(t−t̄ ). (3.10)

Let us assume for a moment that L is a non-integer. Then we may define an integration
path starting at eiφ∞, encircling the origin counterclockwise, and returning to eiφ∞. The
phase angle φ has to be chosen in such a way that the integral is well defined. We thus end
with the well-known integral representation for the reciprocal gamma function, both for the t
and t̄ integrations, with the result

IL = 2π

(L + 1)(−L) eiπL = 2 sinπ(L + 1) eiπL

= i(e2π iL − 1). (3.11)

Equation (3.7) thus is well defined for non-integer L if the paths of integration are chosen
as described above. For integer L the expression on the right-hand side is not defined, but it is
easily seen that the limit (non-integer L) → (integer L) exists and gives

|A|−L = 1

i

∫ eiφ∞

0
dt
∮

dt̄ dτ ∗ dτ |T |L e− Tr(AT ) (3.12)

where t̄ integration is performed counterclockwise on a circle about the origin.
Equation (3.12) holds for all natural numbers L.

Applied to equation (2.24), we have

Z = 1

IL

∫
d[x] d[t] eix†(E−H0)x|T |L e− Tr[T (1+iλX̂)]. (3.13)

Now x integrations can be performed, using definition (2.23),∫
d[x] ei[x†(E−H0)x−Tr(λT X̂)] =

∫
d[x] eix†(E−H0−λT 1N)x

=
∏
α

1∣∣E − E0
a1 − λT

∣∣
(3.14)

whence follows

Z = 1

IL

∫
d[t]|T |L e− Tr T

∏
α

1∣∣E − E0
a1 − λT

∣∣ . (3.15)

This may alternatively be written as

Z = 1

IL

∫
d[t] e− Tr[F(T )] (3.16)

where

F(T ) = T − L ln T +
∑
α

ln
(
E − E0

a1 − λT
)
. (3.17)

Equations (3.15) to (3.17) constitute our next intermediate result. They allow us to
calculate the averaged density of states of a billiard with randomly distributed scatterers in
terms of the eigenenergies of the billiard without scatterers. All integrals can be solved
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exactly by means of the residuum method. In the remaining step the limit N → ∞ has
to be performed. The occurring infinite products diverge as a consequence of the delta-like
singularities in the potential. But the divergences can be handled in a standard way by a
renormalization of the coupling constant (Albeverio and Šeba 1991). See also Bogomolny
et al (2001), where the situation of a single scatterer in a rectangular billiard is studied.

From microwave experiments it is known, but for systems with time-reversal symmetry
only, that in billiards with randomly distributed scatterers the wavefunctions are localized
at low energies, but become delocalized at sufficiently high energies (Kudrolli et al 1995,
Stöckmann et al 2001). A calculation of the averaged density of states as a function of energy
from equation (3.15), and of two-point correlation function, inverse participation ratio etc
from its generalization should thus exhibit clear fingerprints of the localization–delocalization
transition.

This will be the programme for future works. For the moment let us proceed along a
more convenient route by taking N fixed and finite, and by performing a second average over
the shape of the billiard.

4. The average over the billiard shape

According to a conjecture of Bohigas et al (1984) the spectrum of a billiard with broken time-
reversal symmetry should obey the same statistical features as the spectrum of a random matrix
taken from the Gaussian unitary ensemble (GUE). Taking this for granted we may replaceH0

in equation (3.13) by a GUE matrix and perform a Gaussian average over the matrix elements
to obtain the average over the billiard shape. (Up to nowH0 has been assumed to be diagonal,
but because of the basis invariance of the expression we may take any other basis as well; it is
much easier to perform the average over the matrix elements than over the eigenvalues.)

The Gaussian average over the matrix elements is trivial and yields〈
e−ix†H0x〉 = 〈e−i

∑
αβ(H0)αβ(x

∗
αxβ+ξ∗

α ξβ)
〉

= 〈e− 1
2 〈(H0)

2〉∑αβ(x
∗
αxβ+ξ∗

α ξβ)(x
∗
βxα+ξ∗

β ξα)
〉

= e− N

2π2 Tr(X̂)2
.

(4.1)

Following the common practice again we have shifted the average energy to zero, and
have applied the normalization

〈
(H0)

2
〉 = N/π2 yielding a mean density of states of 1 at

E = 0 (Verbaarschot et al 1985). After a subsequent Hubbard–Stratonovich transformation
equation (4.1) reads〈

e−ix†H0x〉 = ∫ d[y] e− π2

2N TrY 2−i Tr(X̂Y ) (4.2)

where

Y =
(
y η∗

η ȳ

)
. (4.3)

To make expression (4.2) well defined, the y integration has to be performed from −∞
to ∞, and the ȳ integration from −i∞ to i∞. Inserting expression (4.2) into equation (3.13)
we get as the result of the shape averaging

〈Z〉 = 1

IL

∫
d[x] d[t] d[y]|T |L e− Tr T e− π2

2N TrY 2
eix†(E−λT 1N )x e−i Tr(X̂Y )

= 1

IL

∫
d[t] d[y]|T |L e− Tr T e− π2

2N TrY 2

∫
d[x] eix†(E−λT−Y)1N x (4.4)



5172 H-J Stöckmann

where we have used Tr(X̂Y ) = x†Y1Nx. The X integrations are straightforward and yield

〈Z〉 = 1

IL

∫
d[t] d[y]|T |L e− Tr T e− π2

2N TrY 2 1

|E − λT − Y |N . (4.5)

Again we apply expression (3.7) to rewrite the determinant,

1

|E − λT − Y |N = 1

IN

∫
d[s]|S|N eTrS(E−λT−Y) (4.6)

where

S =
(
s σ ∗

σ s̄

)
. (4.7)

In addition, we replace T by NT and Y by NY , and obtain

〈Z〉 = 1

ILIN

∫
d[t] d[y] d[s]|T |L e−N Tr T e−N π2

2 TrY 2 |S|N eTr S(E−λNT−NY)

= 1

IN

∫
d[s]|S|N eTr(SE) 1

IL

∫
d[t]|T |L e−N Tr T (1+λS)

×
∫

d[y] e−N(π2

2 TrY 2+Tr(SY)). (4.8)

The T and Y integrations can now be performed with the result

〈Z〉 = 1

IN

∫
d[s] eTr(SE) |S|N

|1 + λS|L e
N

2π2 Tr S2

. (4.9)

Equation (4.9) is the main result of this paper. It is surprisingly simple and allows an easy
calculation of the density of states for the billiard with randomly distributed scatterers, doubly
averaged over the disorder and shape of the billiard. We only have to perform the remaining
integrations over four commuting and anti-commuting variables.

5. The density of states

The calculation of the integral is easiest, if we transform the matrix S into a diagonal matrix
via

S =
(
s σ ∗

σ s̄

)
=
(√

1 + βγ −β
−γ √

1 + γβ

)(
sB ·
· sF

)(√
1 + βγ β

γ
√

1 + γβ

)
. (5.1)

After performing the matrix multiplications we have

s = sB + βγ (sB − sF ) σ ∗ = β(sB − sF )

σ = −γ (sB − sF ) s̄ = sF + βγ (sB − sF ) (5.2)

whence follows for the volume element

d[s] = −dsB dsF dβ dγ

(sB − sF )
2 . (5.3)

Recalling that the sB integration is from 0 to eiφ∞ with a suitably chosen phase angle φ,
and that the sF integration is along a circle about the origin (see equation (3.12)), we obtain
from equation (4.9)

〈Z〉 = −1

i

∫ eiφ∞

0

∮
dsB dsF dβ dγ

(sB − sF )2
eE+[sB+βγ (sB−sF )]−E′

+[sF+βγ (sB−sF )]

×
∣∣∣∣ sBsF
∣∣∣∣
N ∣∣∣∣1 + λsF

1 + λsB

∣∣∣∣
L

e
N

2π2 (s
2
B−s2

F ). (5.4)
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The value for the phase angle can be inferred from equation (4.6): since t and y are real,
and E+ has an infinitesimally small positive imaginary part, integration has to be performed
from 0 to i∞.

The integration over the antisymmetric variables is easily done, which yields

〈Z〉 = 1

2π i

∫ i∞

0
dsB

∮
dsF

E+ − E′
+

sB − sF
eE+sB−E′

+sF

∣∣∣∣ sBsF
∣∣∣∣
N ∣∣∣∣1 + λsF

1 + λsB

∣∣∣∣
L

e
N

2π2 (s
2
B−s2

F ). (5.5)

It follows for the mean density of states (see equation (2.7))

〈ρ(E)〉 = − 1

π
Im

dZ1

dE′

∣∣∣∣
E′=E

= 1

π
Im

1

2π i

∫ i∞

0
dsB

∮
dsF

eE(sB−sF )

sB − sF

∣∣∣∣ sBsF
∣∣∣∣
N ∣∣∣∣1 + λsF

1 + λsB

∣∣∣∣
L

e
N

2π2 (s
2
B−s2

F ). (5.6)

Differentiating with respect to E, we have after some straightforward transformations

〈ρ ′(E)〉 = π2

2N
INL(ε, α)Ī (N−1)L(ε, α) (5.7)

where

ε = π√
2N

E α =
√
N/2

πλ
(5.8)

and

INL(ε, α) = 1

π i

∫ i∞

−i∞
dx e2εx (2x)N

(x + α)L
ex

2
(5.9)

Ī NL(ε, α) = 1

π i

∮
dy e−2εy (y + α)L

(2y)N+1
e−y2

. (5.10)

From the definitions we immediately obtain the recursion relations

I ′
NL = I(N+1)L

(
INLe2εα)′ = IN(L−1) e2εα

(5.11)
Ī ′
NL = −Ī (N−1)L

(
Ī NLe−2εα

)′ = −Ī N(L+1) e−2εα

where the prime denotes differentiation with respect to ε.
For L = 0 we get in particular

IN0(ε, α) = (−1)N√
π

e−ε2
HN(ε) (5.12)

Ī N0(ε, α) = (−1)N

2NN!
HN(ε) (5.13)

where integral representations of the Hermite polynomials have been used (see e.g. Magnus
et al (1966)). Using the recursion relations we now calculate 〈ρ(E)〉 from equation (5.7)
by repeated partial integration with the result

〈ρ(E)〉 = π√
2N

N−1∑
k=0

IkL(ε, α)Ī kL(ε, α). (5.14)

We have thus obtained a closed expression for the averaged density of states for arbitrary
values of N and L. It is an easy matter to show, again using the recursion relations (5.11), that∫∞
−∞〈ρ(E)〉dE = N , as it should be.
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For L = 0 equation (5.14) reduces to

〈ρ(E)〉 = π√
2N

N−1∑
k=0

[ψk(ε)]2 (5.15)

where

ψk(x) = 1

(2kk!
√
π)1/2

Hk(x) e−x2/2 (5.16)

is an harmonic oscillator eigenfunction. This is identical with the well-known exact expression

for the density of states of the GUE, which in the limit of large N reduces to Wigner’s semicircle
law (Mehta 1991).

6. The strong coupling limit

Using the recursion relations (5.11) INL and Ī NL can be calculated from IN0 and Ī N0 by
repeated integration or differentiation, respectively. Since all integrations can be performed
analytically, we have got an exact representation for the density of states for arbitrary L.
Though this may be helpful for small values of L, it is not very useful for practical purposes,
since one is usually interested in the limit N, L → ∞ while the ratio l = L/N remains
finite.

In such a situation it is suggested to solve integrals (5.9) and (5.10) with the help of
saddle-point techniques. This leads to a cubic saddle-point equation which still can be solved
exactly using Cardano’s formula. The resulting equations are not very elucidating, however.
Therefore we proceed in another direction and restrict the following discussion to the strong
coupling limit λ 
 1, or α � 1. In the discussion we have to discriminate between the two
situations N > L and N < L.

(i) N > L. For this case we may replace (x + α)L and (y + α)L in the integrands by xL

and yL, respectively, to obtain

INL(ε, α) = 2L

π i

∫ i∞

−i∞
dx e2εx(2x)N−L ex

2
(6.1)

Ī NL(ε, α) = 2−L

π i

∮
dy e−2εy(2y)−(N−L) e−y2

(6.2)

In the strong coupling limit the averaged density of states for a billiard system with N
levels taken into account and L randomly distributed scatterers is thus the same as for a system
with N − L levels, and no scatterer at all. We are again in the random matrix regime.

Remember that already in the beginning we observed that the spectra of billiards with
randomly distributed scatterers show random matrix behaviour, but at that point we considered
the weak coupling limit λ � 1 (see the discussion following equation (2.25)).

We thus can note that for N > L both in the weak and the strong coupling limit the
averaged density of states shows random matrix behaviour.

(ii)N < L. Now we cannot replace any longer (x + α)L and (y + α)L in the integrands in
equations (5.9) and (5.10) by xL and yL, since in this limit the integral for INL diverges, and
that for Ī NL gives zero. In the limit α � 1, on the other hand, the main contributions to
the integrals come from regions x � 1 and y � 1, where the Gaussian cut-offs are not yet
relevant. We may therefore replace ex

2
and e−y2

by 1, and solve the integrals by means of the
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residuum method with the result

INL(ε, α) = 2N+1 �(ε)

(L− 1)!

(
d

dx

)L−1

(e2εxxN)|x=−α

= 2N+1αN+1−L�(z)(−1)N+1−L e−zL(N−L+1)
L−1 (z)

= 2N+1αN+1−L�(z)
N!

(L− 1)!
e−zzL−N−1L

(L−N−1)
N (z) (6.3)

Ī NL(z, α) = 2−N 1

N!

(
d

dy

)N
(e−2εy (y + α)L)|y=0

= 2−NαL−NL(L−N)
N (z) (6.4)

where

z = 2εα = E/λ. (6.5)

�(z) is the Heaviside step function and L(α)n (z) is a generalized Laguerre polynomial.(
There are two conventions for the Laguerre polynomials found in the literature, differing

in the normalization. In this paper the definition of Magnus et al (1966) is adopted, where
L(α)n (0) = (n+α

n

)
.
)

It follows from equation (5.14) for the density of states

〈ρ(E)〉 = 1

λ(L− 1)!
�(z) e−z

N−1∑
k=0

k!zL−k−1L
(L−k−1)
k (z)L

(L−k)
k (z). (6.6)

Equation (6.6) simplifies considerably in the limitL→ ∞,N → ∞, withL/N remaining
finite. Inserting expressions (6.3) and (6.4) for INL(z, α) and Ī NL(z, α), respectively, into
equation (5.7), we obtain

〈ρ ′(E)〉 = 1

λ2

N!

(L− 1)!
�(z) e−zzL−N−1L

(L−N−1)
N (z)L

(L−N+1)
(N−1) (z). (6.7)

In terms of the function

y(α)n (z) = e− z
2 z

α+1
2 L(α)n (z) (6.8)

equation (6.7) may be written as

〈ρ ′(E)〉 = 1

λ2

N!

(L− 1)!
�(z)z−2y

(L−N−1)
N (z)y

(L−N+1)
N−1 (z). (6.9)

The y(α)n obey the differential equation

y ′′ +

(
2n + α + 1

2z
− 1

4
+

1 − α2

4z2

)
y = 0. (6.10)

Equation (6.10) is easily identified as the radial Schrödinger equation of the hydrogen
atom, where y(α)n (z)/z is the radial part of the wavefunction. This suggests an approximation
of y(α)n by means of the WKB method. In the present context it is sufficient to consider the
solution in the classically allowed region. For this regime the WKB approximation yields (see
e.g. section 9.3 of Morse and Feshbach (1953))

y(α)n (z) = y0√
q

cos

(∫ z

z0

q dz− π

4

)
(6.11)

where

q =
√

2n + α + 1

2z
− 1

4
− α2

4z2
(6.12)
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and z0, z1 are the classical turning points given by

z0/1 = 2n + α + 1 ±
√
(2n + 1)(2n + 2α + 1). (6.13)

The replacement of 1 − α2 by −α2 in going from equation (6.10) to equation (6.12)
corrects for the singularity of the potential at z = 0 (see the discussion in Morse and Feshbach
(1953)). (The same technique can be applied to derive the semicircle law in a simple way from
the exact expression (5.15), see chapter 3.2.3 of Stöckmann (1999); the procedure is more or
less an elaboration of an idea developed in appendix A.9 of the book of Mehta (1991).)

Inserting approximation (6.11) into equation (6.9) we end up with

〈ρ(E)〉 = 1

λπ

1

2z

√
4LN − (z− L−N)2 z = E/λ (6.14)

where the classical turning points are given by

z0/1 = L +N ± 2
√
LN. (6.15)

Details of the derivation can be found in the appendix. The density of states thus
changes dramatically if L surpasses N. For L < N Wigner’s semicircle law is found, and the
eigenenergies are distributed between −2π/N and 2π/N . For L > N , on the other hand,
only positive eigenvalues are found, if λ is positive, in an energy window limited by λz0 and
λz1.

7. Discussion

We have obtained a surprisingly simple expression for the averaged density of states of a
billiard with randomly distributed scatterers. The central ingredient was the idea to substitute
the average over the scatterer positions in equation (2.16) by a weighted average, with the
wavefunction amplitude probability density as the weight function. It was argued that both
averages are equivalent. In view of the central importance of this procedure it seems appropriate
to discuss the limitations of the approach.

(i) First, the impurities are considered as uncorrelated. In particular, it is not excluded that
two impurities occupy the same site.

(ii) Second, wavefunctions belonging to different eigenvalues are considered as uncorrelated.
This may pose a problem, since it is known from semi-classical quantum mechanics that
there are correlations on energy scales of the order of h̄/T , where T is the length of the
shortest periodic orbit (see Gutzwiller (1990) for a review). On the other hand, these
correlations vanish in the semi-classical limit on energy scales of the mean level spacing.
It therefore seems legitimate to neglect correlations between different wavefunctions.

No problem, on the other hand, arises from the fact that there are spatial correlations for
individual wavefunctions, as is well known from the works of Berry (1977) and Fal’ko and
Efetov (1996). Since only the weight of the wavefunction amplitudes enters equation (2.18),
spatial correlations are completely irrelevant.

The approximation performed in section 4 by substituting the billiard by a random matrix
of finite rank is of another type. It has been applied to obtain a simple tractable model, but by
this second step we have reduced our system to a mere caricature of a real billiard system. In
particular the information on the dimension of the billiard, which obviously is an important
quantity for questions of localization and delocalization, is lost. (The information on the
dimension is still present in equation (3.15), namely in the spectrum of the empty billiard
which depends on the dimension via the mean density of states.)



A supersymmetry approach to billiards with randomly distributed scatterers 5177

This is why at the moment a comparison with literature results is not possible. In particular
the work of Luttinger and Tao (1983) has to be mentioned in this respect, who calculated the
density of states for the billiard with randomly distributed scatterers in the low energy limit.
For a more detailed consideration of their results, we would have to go back to equations
(3.15) to (3.17), perform the limit N → ∞, and calculate the density of states for the true
billiard system, and not a random matrix substitute only.

But the present results suggest that already in our toy model there is a localization–
delocalization transition at L = N . For L < N we are in the regime of delocalized
wavefunctions obeying random matrix behaviour. For L > N , on the other hand the
wavefunctions become localized, giving rise to a completely changed density of states. In this
respect the rank N of the matrix seems to take the role of the energy in the real billiard system.

For the moment, however, this conclusion must be considered as premature. Knowledge
of the density of states is not sufficient to discriminate between localized and delocalized
wavefunctions. For this we need additional information on the two-point correlation function,
the inverse participation ratio and related quantities. The corresponding studies are under
progress and will be published separately (Guhr and Stöckmann 2002).

If one compares the present approach with the nonlinearσmodel, a dramatic simplification
is found. In the nonlinear σ model one ends up with a supersymmetric integral over
supersymmetric field variables which can be solved only within the zero mode approximation.
In our approach the very simple integral (4.9) is obtained instead, containing only one set of
supersymmetric variables, which even for the density of states can be solved exactly. The
same is true for all n-point correlation functions as will be shown in Guhr and Stöckmann
(2002).

Even better, the assumption of a random distribution of point-like scatterers applied in
this work is a much more realistic description of the situation found in mesoscopic systems
than the assumption of a delta-correlated disorder potential assumed in the nonlinear σ
model.

It might be considered as a draw-back that the present derivation is based on two unproven
conjectures, namely that (i) the wavefunction amplitudes in a chaotic billiard are Gaussian
distributed, and (ii) the eigenvalues in a chaotic billiard obey random matrix behaviour.
On the other hand, there is such overwhelming numerical evidence that both conjectures
are true that one could equally well argue that both assumptions are even better founded
than the assumption of Gaussian distributed matrix elements applied in random matrix
theory.

From the point of view of an experimentalist it would be highly desirable if all quantities
of interest were available for the systems with time-reversal symmetry as well. Though
the calculations for this case are notoriously difficult, it should be worthwhile to undertake
the effort. Experiments with microwaves on localization–delocalization transitions, pulse
propagation, etc in disordered systems do already exist, as mentioned in the introduction, and
are waiting for their proper theoretical explanation.
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Appendix. The density of states in the large L limit

To derive equation (6.14) for the density of states we start with equation (6.7),

ρ̂ ′(z) = N!

(L− 1)!
e−zzL−N−1L

(L−N−1)
N (z)L

(L−N+1)
N−1 (z). (A.1)

where we have introduced z = E/λ as a new variable, and where ρ̂(z) dz = ρ(E) dE.
z is assumed to be positive in the following. Using elementary relations for the Laguerre
polynomials, equation (A.1) may be transformed as follows:

ρ̂ ′(z) = −N!

L!
e−z[zL−NL(L−N)

N

]′[
L
(L−N)
N

]′
= −N!

L!
e−z
[
e
z
2 z

L−N−1
2 y

(L−N)
N

]′ [
e
z
2 z−

L−N+1
2 y

(L−N)
N

]′
(A.2)

where y(L−N)
N (z) is given by equation (6.8). It remains to determine the normalization

constant y0. From the orthogonality relation for the Laguerre polynomials we have∫ ∞

0

[
y(α)n (z)

]2 dz

z
=
∫ ∞

0
e−zxα

[
L(α)n (z)

]2
dz = (n + α)!

n!
. (A.3)

From the WKB approximation (6.11), on the other hand, we obtain∫ ∞

0

[
y(α)n (z)

]2 dz

z
= y2

0

2

∫ z1

z0

dz

zq(z)
= πy2

0 (A.4)

whence follows

y0 =
[

1

π

(n + α)!

n!

] 1
2

. (A.5)

The sign has to be chosen positive to be in accordance with the usual definition of the
Laguerre polynomials. Inserting now the WKB approximation for y(α)n (z) into equation (A.2)
we have

ρ̂ ′(z) = − 1

π
e−z
[

e
z
2 z

L−N−1
2

1√
q

cosw

]′ [
e
z
2 z−

L−N+1
2

1√
q

cosw

]′
(A.6)

where

q(z) =
√
L +N + 1

2z
− 1

4
− (L−N)2

4z2
(A.7)

and

w =
∫ z1

z0

q(z) dz− π

4
. (A.8)

It follows

ρ̂ ′(z) = − 1

πz

[(
1

2
+
L−N − 1

2z
− 1

2

q ′

q

)
1√
q

cosw − √
q sinw

]

×
[(

1

2
− L− N + 1

2z
− 1

2

q ′

q

)
1√
q

cosw − √
q sinw

]
. (A.9)

The q ′ terms may be discarded since they are by an order of 1/L smaller than the others.
For the same reason we may replace L − N − 1 and L − N + 1 by L − N . Averaging over
the rapidly oscillating terms, we have

ρ̂ ′(z) = − 1

2πzq

[(
1

2
+
L−N

2z

)(
1

2
− L−N

2z

)
+ q2

]
. (A.10)
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Inserting expression (A.7) for q, we obtain

ρ̂ ′(z) = − 1

2πzq

[
L +N

2z
− (L−N)2

2z2

]

= 1

2πq
(q2)′ = 1

π
q ′ (A.11)

where again terms of the order of 1/L have been neglected. It follows

ρ̂(z) = 1

π
q (A.12)

which is equivalent to equation (6.14). �
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Stöckmann H J, Barth M, Dörr U, Kuhl U and Schanze H 2001 Physica E 9 571
Topinka M A, LeRoy B J, Westervelt R M, Shaw S E J, Fleischmann R, Heller E J, Maranowski K D

and Gossard A C 2001 Nature 410 183
Verbaarschot J, Weidenmüller H and Zirnbauer M 1985 Phys. Rep. 129 367
Wiersma D S, Bartolini P, Lagendijk A and Ringhini R 1997 Nature 390 671


